6x^2-8=2x^2+32

Simple and best practice solution for 6x^2-8=2x^2+32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x^2-8=2x^2+32 equation:



6x^2-8=2x^2+32
We move all terms to the left:
6x^2-8-(2x^2+32)=0
We get rid of parentheses
6x^2-2x^2-32-8=0
We add all the numbers together, and all the variables
4x^2-40=0
a = 4; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·4·(-40)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*4}=\frac{0-8\sqrt{10}}{8} =-\frac{8\sqrt{10}}{8} =-\sqrt{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*4}=\frac{0+8\sqrt{10}}{8} =\frac{8\sqrt{10}}{8} =\sqrt{10} $

See similar equations:

| 3=26-3x | | 4(5m+6)=-36 | | 5x^2-4x-672=0 | | 4m-6=2m+42 | | 15x+8=-3x+80 | | 9a+10=2a+80 | | 2y+3/7=-3 | | 5a+7=2a+25 | | 6(n-4)-3=19 | | 13v-20+19v=19+19v | | 4+25=4(s-2) | | (6x+14)=(8x−12) | | 7(x-3)=17 | | 8=(7x+4) | | 6x-7=-x+35 | | 9+27=-4(3x-9) | | 8(x-3)-2=10 | | 3(b+2)=13 | | 155+(x-6)=180 | | 180=63+2x+13 | | y/3-6=24 | | |z-4|=9 | | 1.1c=2.5c+7.14 | | 2(y-4)+3=12 | | 155+(x-6)=189 | | 5x+25+8x+85=180 | | 26=7g-999 | | (-6x+1)+(4x-1=) | | -3(x-13)=-51 | | 6x+4=5x+17 | | -8c+11c=18 | | 6x+3=111-6x |

Equations solver categories